Gérard Ballot¹ Jean-Daniel Kant ²

- (1) Université Panthéon Assas TEPP-CNRS, Paris- CRED
- (2) Université Pierre et Marie Curie CNRS, Paris LIP6

OECD Workshop - Paris - September 29 2017

iscussion

00000

- Novel tool of analysis for labor markets
- Theory: endogenous choice of contract types
- Method: 1.Agent-based Computational Economics
- Method: 2.calibration on a large number of targets (63)
- Results: an anatomy of the French labor market
- Experiments in labor market policies

WorkSim: an agent-based model of the French labor market

- Novel tool of analysis for labor markets
- Theory: endogenous choice of contract types
- Method: 1.Agent-based Computational Economics
- Method: 2.calibration on a large number of targets (63)
- Results: an anatomy of the French labor market
- Experiments in labor market policies

- Novel tool of analysis for labor markets
- Theory: endogenous choice of contract types
- Method: 1.Agent-based Computational Economics
- Method: 2.calibration on a large number of targets (63)
- Results: an anatomy of the French labor market
- Experiments in labor market policies

- Novel tool of analysis for labor markets
- Theory: endogenous choice of contract types
- Method: 1.Agent-based Computational Economics
- Method: 2.calibration on a large number of targets (63)
- Results: an anatomy of the French labor market
- Experiments in labor market policies

- Novel tool of analysis for labor markets
- Theory: endogenous choice of contract types
- Method: 1.Agent-based Computational Economics
- Method: 2.calibration on a large number of targets (63)
- Results: an anatomy of the French labor market
- Experiments in labor market policies

- Novel tool of analysis for labor markets
- Theory: endogenous choice of contract types
- Method: 1.Agent-based Computational Economics
- Method: 2.calibration on a large number of targets (63)
- Results: an anatomy of the French labor market
- Experiments in labor market policies

- Pioneers: Bergmann (1974) Eliasson (1977) macro ABM
- ARTEMIS, the ancestor of WorkSim (Ballot, 1981, 2002)
 - first ABM of the labor market with gross flows, institutional framework (incl. temporary help firm), and firing costs
 - generates segmentation, espec. for the young workers
- Richiardi (2004, 2006)
 - matching process between workers and firms with on-the-job search, entrepreneurial decisions and endogenous wage determination.
 - Reproduce a number of stylized facts (e.g. negatively sloped wage curve)
- Neugart (2008): ABM with sector-specific skill requirements, firms are hit by asymmetric shocks, human capital investments. No matching function. Used for labor policy evaluation.

- Pioneers: Bergmann (1974) Eliasson (1977) macro ABM
- ARTEMIS, the ancestor of WorkSim (Ballot, 1981, 2002)
 - first ABM of the labor market with gross flows, institutional framework (incl. temporary help firm), and firing costs
 - generates segmentation, espec. for the young workers
- Richiardi (2004, 2006)
 - matching process between workers and firms with on-the-job search, entrepreneurial decisions and endogenous wage determination.
 - Reproduce a number of stylized facts (e.g. negatively sloped wage curve)
- Neugart (2008): ABM with sector-specific skill requirements, firms are hit by asymmetric shocks, human capital investments. No matching function. Used for labor policy evaluation.

- Pioneers: Bergmann (1974) Eliasson (1977) macro ABM
- ARTEMIS, the ancestor of WorkSim (Ballot, 1981, 2002)
 - first ABM of the labor market with gross flows, institutional framework (incl. temporary help firm), and firing costs
 - generates segmentation, espec. for the young workers
- Richiardi (2004, 2006)
 - matching process between workers and firms with on-the- job search, entrepreneurial decisions and endogenous wage determination.
 - Reproduce a number of stylized facts (e.g. negatively sloped wage curve)
- Neugart (2008): ABM with sector-specific skill requirements, firms are hit by asymmetric shocks, human capital investments. No matching function. Used for labor policy evaluation.

- Pioneers : Bergmann (1974) Eliasson (1977) macro ABM
- ARTEMIS, the ancestor of WorkSim (Ballot, 1981, 2002)
 - first ABM of the labor market with gross flows, institutional framework (incl. temporary help firm), and firing costs
 - generates segmentation, espec. for the young workers
- Richiardi (2004, 2006)
 - matching process between workers and firms with on-the- job search, entrepreneurial decisions and endogenous wage determination.
 - Reproduce a number of stylized facts (e.g. negatively sloped wage curve)
- Neugart (2008): ABM with sector-specific skill requirements, firms are hit by asymmetric shocks, human capital investments. No matching function. Used for labor policy evaluation.

- Barlet et al. (2009) simulated the French labor market for year 2006.
 - They distinguish individuals and jobs but not firms .
 - labor demand side, with creations and destructions of jobs based on a desired margin
 - Aggregate Matching function
 - calibrated through an indirect inference method (20 targets)

• Heterogeneous agents along several dimensions:

- individuals'side: age, gender, household, talent, human capital accumulated, status (employed, unemployed, inactive, retired)
- firms's side: firm size, different occupations, jobs with Open Ended Contracts (OEC) and Fixed Term Contracts (FTC)
- Modeling of some institutions and specifically labor law on contracts
- detailed modeling of the endogenous choice between OEC and FTC contracts

- Heterogeneous agents along several dimensions:
- individuals'side: age, gender, household, talent, human capital accumulated, status (employed, unemployed, inactive, retired)
- firms's side: firm size, different occupations, jobs with Open Ended Contracts (OEC) and Fixed Term Contracts (FTC)
- Modeling of some institutions and specifically labor law on contracts
- detailed modeling of the endogenous choice between OEC and FTC contracts

- Heterogeneous agents along several dimensions:
- individuals'side: age, gender, household, talent, human capital accumulated, status (employed, unemployed, inactive, retired)
- firms's side: firm size, different occupations, jobs with Open Ended Contracts (OEC) and Fixed Term Contracts (FTC)
- Modeling of some institutions and specifically labor law on contracts
- detailed modeling of the endogenous choice between OEC and FTC contracts

- Heterogeneous agents along several dimensions:
- individuals'side: age, gender, household, talent, human capital accumulated, status (employed, unemployed, inactive, retired)
- firms's side: firm size, different occupations, jobs with Open Ended Contracts (OEC) and Fixed Term Contracts (FTC)
- Modeling of some institutions and specifically labor law on contracts
- detailed modeling of the endogenous choice between OEC and FTC contracts

- Heterogeneous agents along several dimensions:
- individuals'side: age, gender, household, talent, human capital accumulated, status (employed, unemployed, inactive, retired)
- firms's side: firm size, different occupations, jobs with Open Ended Contracts (OEC) and Fixed Term Contracts (FTC)
- Modeling of some institutions and specifically labor law on contracts
- detailed modeling of the endogenous choice between OEC and FTC contracts

Two types of contracts

Open Ended Contract (OEC) - "CDI"

- 87% of employees in 2014
- Undetermined duration, More attractive for job seekers
- Probationary period (2-4 months)
- Firing costs: delay for economic dismissals, advance notice, severance pay, litigation costs

Fixed Term Contract (FTC) – "CDD"

- \bullet 9 % of employees in 2014 80 % of the hires
- Maximum duration 18 months, renewable once (2014)
- Small probationary period (< 4 weeks)
- Job risk allowance at the end of the contract (10 % of total gross salary)
- Grace period to be respected by the employer between 2 FTC

Two types of contracts

Open Ended Contract (OEC) - "CDI"

- 87% of employees in 2014
- Undetermined duration, More attractive for job seekers
- Probationary period (2-4 months)
- Firing costs: delay for economic dismissals, advance notice, severance pay, litigation costs

Fixed Term Contract (FTC) - "CDD"

- \bullet 9 % of employees in 2014 80 % of the hires
- Maximum duration 18 months, renewable once (2014)
- Small probationary period (< 4 weeks)
- ullet Job risk allowance at the end of the contract (10 % of total gross salary)
- Grace period to be respected by the employer between 2 FTC

2. Theoretical framework

Extension of the search approach along several axes:

- 1. Matching by bilateral meetings (workers search with a reservation utility, employers select with a reservation expected profit). No aggregate matching function
- 2. Firms are multi-jobs and allocate their demand rise between contracts
- 3. All decisions take into account anticipated search and other costs
- 4. Decisions are taken under bounded rationality (H.Simon) in this complex environment
- BUT agents learn individually (expected firing costs, expected duration of an OEC...)
- Outcomes: Job gross flows and workers' gross flows emerge from these micro-level interactions. Consistent stock-flow accounts.

- Extension of the search approach along several axes:
- 1. Matching by bilateral meetings (workers search with a reservation utility, employers select with a reservation expected profit). No aggregate matching function
- 2. Firms are multi-jobs and allocate their demand rise between contracts
- 3. All decisions take into account anticipated search and other costs
- 4. Decisions are taken under bounded rationality (H.Simon) ir this complex environment
- BUT agents learn individually (expected firing costs, expected duration of an OEC...)
- Outcomes: Job gross flows and workers' gross flows emerge from these micro-level interactions. Consistent stock-flow accounts.

- Extension of the search approach along several axes:
- 1. Matching by bilateral meetings (workers search with a reservation utility, employers select with a reservation expected profit). No aggregate matching function
- 2. Firms are multi-jobs and allocate their demand rise between contracts
- 3. All decisions take into account anticipated search and other costs
- 4. Decisions are taken under bounded rationality (H.Simon) in this complex environment
- BUT agents learn individually (expected firing costs, expected duration of an OEC...)
- Outcomes: Job gross flows and workers' gross flows emerge from these micro-level interactions. Consistent stock-flow accounts.

- Extension of the search approach along several axes:
- 1. Matching by bilateral meetings (workers search with a reservation utility, employers select with a reservation expected profit). No aggregate matching function
- 2. Firms are multi-jobs and allocate their demand rise between contracts
- 3. All decisions take into account anticipated search and other costs
- 4. Decisions are taken under bounded rationality (H.Simon) in this complex environment
- BUT agents learn individually (expected firing costs, expected duration of an OEC...)
- Outcomes: Job gross flows and workers'gross flows emerge from these micro-level interactions. Consistent stock-flow accounts.

- Extension of the search approach along several axes:
- 1. Matching by bilateral meetings (workers search with a reservation utility, employers select with a reservation expected profit). No aggregate matching function
- 2. Firms are multi-jobs and allocate their demand rise between contracts
- 3. All decisions take into account anticipated search and other costs
- 4. Decisions are taken under bounded rationality (H.Simon) in this complex environment
- BUT agents learn individually (expected firing costs, expected duration of an OEC...)
- Outcomes: Job gross flows and workers'gross flows emerge from these micro-level interactions. Consistent stock-flow accounts.

- Extension of the search approach along several axes:
- 1. Matching by bilateral meetings (workers search with a reservation utility, employers select with a reservation expected profit). No aggregate matching function
- 2. Firms are multi-jobs and allocate their demand rise between contracts
- 3. All decisions take into account anticipated search and other costs
- 4. Decisions are taken under bounded rationality (H.Simon) in this complex environment
- BUT agents learn individually (expected firing costs, expected duration of an OEC...)
- Outcomes: Job gross flows and workers' gross flows emerge from these micro-level interactions. Consistent stock-flow accounts.

- Extension of the search approach along several axes:
- 1. Matching by bilateral meetings (workers search with a reservation utility, employers select with a reservation expected profit). No aggregate matching function
- 2. Firms are multi-jobs and allocate their demand rise between contracts
- 3. All decisions take into account anticipated search and other costs
- 4. Decisions are taken under bounded rationality (H.Simon) in this complex environment
- BUT agents learn individually (expected firing costs, expected duration of an OEC...)
- Outcomes: Job gross flows and workers'gross flows emerge from these micro-level interactions. Consistent stock-flow accounts.

- Partial equilibrium model: aggregate demand is exogenous and stable, and price fixed (small economy).
- Each firm can be viewed as offering its variety of a good to consumers who have fluctuating preferences
- Stochastic shocks on firm's demand share, not productivity shocks on individual jobs: a yearly trend and weekly random walk
- Each firm forms anticipations with several scenarios which are weighted with possible loss aversion (more below)
- The computation of the expected profits of each type of contract for a given job creation leads to choose either ar OEC or a FTC

- Partial equilibrium model: aggregate demand is exogenous and stable, and price fixed (small economy).
- Each firm can be viewed as offering its variety of a good to consumers who have fluctuating preferences
- Stochastic shocks on firm's demand share, not productivity shocks on individual jobs: a yearly trend and weekly random walk
- Each firm forms anticipations with several scenarios which are weighted with possible loss aversion (more below)
- The computation of the expected profits of each type of contract for a given job creation leads to choose either ar OEC or a FTC

- Partial equilibrium model: aggregate demand is exogenous and stable, and price fixed (small economy).
- Each firm can be viewed as offering its variety of a good to consumers who have fluctuating preferences
- Stochastic shocks on firm's demand share, not productivity shocks on individual jobs: a yearly trend and weekly random walk
- Each firm forms anticipations with several scenarios which are weighted with possible loss aversion (more below)
- The computation of the expected profits of each type of contract for a given job creation leads to choose either ar OEC or a FTC

- Partial equilibrium model: aggregate demand is exogenous and stable, and price fixed (small economy).
- Each firm can be viewed as offering its variety of a good to consumers who have fluctuating preferences
- Stochastic shocks on firm's demand share, not productivity shocks on individual jobs: a yearly trend and weekly random walk
- Each firm forms anticipations with several scenarios which are weighted with possible loss aversion (more below)
- The computation of the expected profits of each type of contract for a given job creation leads to choose either ar OEC or a FTC

- Partial equilibrium model: aggregate demand is exogenous and stable, and price fixed (small economy).
- Each firm can be viewed as offering its variety of a good to consumers who have fluctuating preferences
- Stochastic shocks on firm's demand share, not productivity shocks on individual jobs: a yearly trend and weekly random walk
- Each firm forms anticipations with several scenarios which are weighted with possible loss aversion (more below)
- The computation of the expected profits of each type of contract for a given job creation leads to choose either an OEC or a FTC

Substitutions between OEC and FTC

3 substitution factors

- 1. termination costs
 - for OEC, severance pay and litigation costs, hoarding costs, advance notice costs
 - for FTC, job risk allowance, grace period, some hoarding costs.
- duration related factors: training and productivity
 - amortization of training costs less costly on OEC
 - productivity increase during expected spell duration larger for OFC.
- 3. uncertainty factor
 - the higher the volatility of demand, the more jobs created are FTC
 - The higher the aversion to loss, the more FTC

Substitutions between OEC and FTC

3 substitution factors

- 1. termination costs
 - for OEC, severance pay and litigation costs, hoarding costs, advance notice costs
 - for FTC, job risk allowance, grace period, some hoarding costs.
- 2. duration related factors: training and productivity
 - amortization of training costs less costly on OEC
 - productivity increase during expected spell duration larger for OEC.
- 3. uncertainty factor
 - the higher the volatility of demand, the more jobs created are FTC
 - The higher the aversion to loss, the more FTC

Substitutions between OEC and FTC

3 substitution factors

- 1. termination costs
 - for OEC, severance pay and litigation costs, hoarding costs, advance notice costs
 - for FTC, job risk allowance, grace period, some hoarding costs.
- 2. duration related factors: training and productivity
 - amortization of training costs less costly on OEC
 - productivity increase during expected spell duration larger for OEC.
- 3. uncertainty factor
 - the higher the volatility of demand, the more jobs created are FTC
 - The higher the aversion to loss, the more FTC

Complementarities between OEC and FTC

2 complementarity factors

- screening role of FTC before hiring on OEC: some FTC are a stepping stone to OEC, because workers without credentials would never be directly hired on OEC.
- 2. A special buffer role of FTC: the higher the present labor share of FTC, the less risky the hire of new OEC, since FTC can be terminated instead.

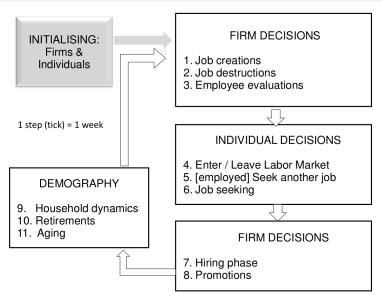
- 3 types of Human Capital (general, occupational, job specific)
- Each job has minimum requirements in human capitals. The employer observes the human capitals credentials, and must pay for the training of a worker he hires up to requirements, if needed
- A worker receives wage based on the hourly base wage posted for the job plus a return on her/his human capitals
- Hiring wages are influenced by the tension on the labor market
- The employer does not know the true productivity of a worker, since he does not observe her/his talent
- After hiring, he learns progressively but never perfectly
- The hired worker learns the amenity (conditions of work) of the job immediately after hire

- 3 types of Human Capital (general, occupational, job specific)
- Each job has minimum requirements in human capitals. The employer observes the human capitals credentials, and must pay for the training of a worker he hires up to requirements, if needed
- A worker receives wage based on the hourly base wage posted for the job plus a return on her/his human capitals
- Hiring wages are influenced by the tension on the labor market
- The employer does not know the true productivity of a worker, since he does not observe her/his talent
- After hiring, he learns progressively but never perfectly
- The hired worker learns the amenity (conditions of work) of the job immediately after hire

- 3 types of Human Capital (general, occupational, job specific)
- Each job has minimum requirements in human capitals. The employer observes the human capitals credentials, and must pay for the training of a worker he hires up to requirements, if needed
- A worker receives wage based on the hourly base wage posted for the job plus a return on her/his human capitals
- Hiring wages are influenced by the tension on the labor market
- The employer does not know the true productivity of a worker, since he does not observe her/his talent
- After hiring, he learns progressively but never perfectly
- The hired worker learns the amenity (conditions of work) of the job immediately after hire

- 3 types of Human Capital (general, occupational, job specific)
- Each job has minimum requirements in human capitals. The employer observes the human capitals credentials, and must pay for the training of a worker he hires up to requirements, if needed
- A worker receives wage based on the hourly base wage posted for the job plus a return on her/his human capitals
- Hiring wages are influenced by the tension on the labor market
- The employer does not know the true productivity of a worker, since he does not observe her/his talent
- After hiring, he learns progressively but never perfectly
- The hired worker learns the amenity (conditions of work) of the job immediately after hire

- 3 types of Human Capital (general, occupational, job specific)
- Each job has minimum requirements in human capitals. The employer observes the human capitals credentials, and must pay for the training of a worker he hires up to requirements, if needed
- A worker receives wage based on the hourly base wage posted for the job plus a return on her/his human capitals
- Hiring wages are influenced by the tension on the labor market
- The employer does not know the true productivity of a worker, since he does not observe her/his talent
- After hiring, he learns progressively but never perfectly
- The hired worker learns the amenity (conditions of work) of the job immediately after hire

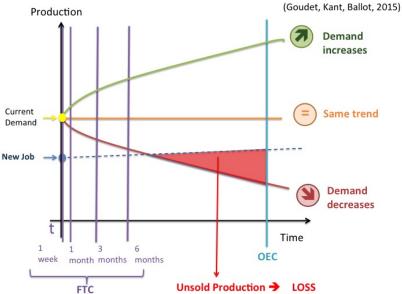

- 3 types of Human Capital (general, occupational, job specific)
- Each job has minimum requirements in human capitals. The employer observes the human capitals credentials, and must pay for the training of a worker he hires up to requirements, if needed
- A worker receives wage based on the hourly base wage posted for the job plus a return on her/his human capitals
- Hiring wages are influenced by the tension on the labor market
- The employer does not know the true productivity of a worker, since he does not observe her/his talent
- After hiring, he learns progressively but never perfectly
- The hired worker learns the amenity (conditions of work) of the job immediately after hire

- 3 types of Human Capital (general, occupational, job specific)
- Each job has minimum requirements in human capitals. The employer observes the human capitals credentials, and must pay for the training of a worker he hires up to requirements, if needed
- A worker receives wage based on the hourly base wage posted for the job plus a return on her/his human capitals
- Hiring wages are influenced by the tension on the labor market
- The employer does not know the true productivity of a worker, since he does not observe her/his talent
- After hiring, he learns progressively but never perfectly
- The hired worker learns the amenity (conditions of work) of the job immediately after hire

- 3 types of Human Capital (general, occupational, job specific)
- Each job has minimum requirements in human capitals. The employer observes the human capitals credentials, and must pay for the training of a worker he hires up to requirements, if needed
- A worker receives wage based on the hourly base wage posted for the job plus a return on her/his human capitals
- Hiring wages are influenced by the tension on the labor market
- The employer does not know the true productivity of a worker, since he does not observe her/his talent
- After hiring, he learns progressively but never perfectly
- The hired worker learns the amenity (conditions of work) of the job immediately after hire

3. WorkSim : a (quick) tour

Simulation Cycle



Firms' decisions: job creations

Job creation issues

- Is the current demand sufficient ?
- How to anticipate its fluctuations ?
- Which type of contract is the most suitable?

Demand anticipation: 3 scenarios

Individual decisions

State Machine

- 6 possible states: inactive, unemployed, employed, employed and seeking a new job, student or retired
- Transitions between these states can be caused by individual choices, external events or a sequence of multiple decisions

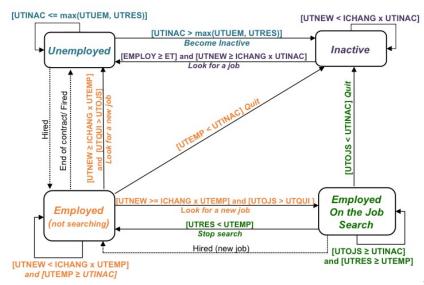
3. WorkSim

$$U = (Income + Amenity + Stability)^{1-\alpha} (Free\ Time)^{\alpha}$$

Individual decisions

State Machine

- 6 possible states: inactive, unemployed, employed, employed and seeking a new job, student or retired
- Transitions between these states can be caused by individual choices, external events or a sequence of multiple decisions


Satisficing Heuristics

- Each individual uses a utility function, to decide whether s/he should stay in her/his current state or move to another one
- Generic utility function (Cobb-Douglas function):

$$U = (Income + Amenity + Stability)^{1-\alpha} (Free\ Time)^{\alpha}$$

• $\alpha \in [0,1]$ encodes the preference for free time. It depends on age, number of children in household and their age (for women)

Individual state changes: overview

Learning: key reservation levels for the matching process

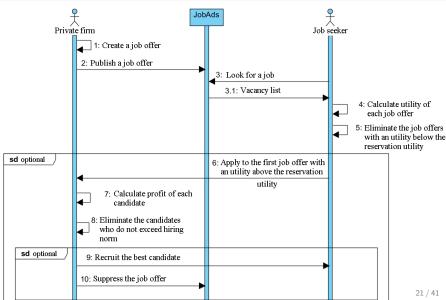
Hiring Norm

$$\textit{HNorm}_{j,p,q,t=\textit{crea}} = (\phi^{\textit{per}}_{\textit{Avg}} + \textit{N}_1 \times (\phi^{\textit{per}}_{\textit{Max}} - \phi^{\textit{per}}_{\textit{Min}})) \frac{\textit{N}(\textit{d}_\textit{c})}{\textit{H}(\textit{TIGH}_{q,t=\textit{crea}})}$$

Reservation utility

$$UTRES_{i,t} = UTRES_{i,t-1} \times (1 - Ru_3) + Ru_4 \times (UTUEM_{i,t} - UTUEM_{i,t-1})$$

Learning: key reservation levels for the matching process


Hiring Norm

$$\textit{HNorm}_{j,p,q,t=\textit{crea}} = (\phi^\textit{per}_\textit{Avg} + \textit{N}_1 \times (\phi^\textit{per}_\textit{Max} - \phi^\textit{per}_\textit{Min})) \frac{\textit{N}(\textit{d}_\textit{c})}{\textit{H}(\textit{TIGH}_{q,t=\textit{crea}})}$$

Reservation utility

$$UTRES_{i,t} = UTRES_{i,t-1} \times (1 - Ru_3) + Ru_4 \times (UTUEM_{i,t} - UTUEM_{i,t-1})$$

Matching **process**: overview

4. Simulation results

Scaling

 20 000 agents: 18 300 individuals and 1 700 firms (Reduction factor 1/2300)

- A set of parameters and a set of desired outputs (targets)
- Minimize fitness function
 - $fit = \sum_{k} w_{k}.(SimOutput_{k} Target_{k})^{2}$
- 60 parameters to calibrate
- **63 targets** : unemployment rates, activity rates, salaries, job flows, FTC, long-term unemployment, ...

Scaling

 20 000 agents: 18 300 individuals and 1 700 firms (Reduction factor 1/2300)

- A set of parameters and a set of desired outputs (targets)
- Minimize fitness function
 fit = ∑, w_t (SimOutput, Target_t)²
- 60 parameters to calibrate
- **63 targets** : unemployment rates, activity rates, salaries, job flows, FTC, long-term unemployment, ...

Scaling

 20 000 agents: 18 300 individuals and 1 700 firms (Reduction factor 1/2300)

- A set of parameters and a set of desired outputs (targets)
- Minimize fitness function

•
$$fit = \sum_k w_k \cdot (SimOutput_k - Target_k)^2$$

- 60 parameters to calibrate
- **63 targets** : unemployment rates, activity rates, salaries, job flows, FTC, long-term unemployment, ...

Scaling

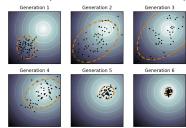
 20 000 agents: 18 300 individuals and 1 700 firms (Reduction factor 1/2300)

- A set of parameters and a set of desired outputs (targets)
- Minimize fitness function

•
$$fit = \sum_k w_k . (SimOutput_k - Target_k)^2$$

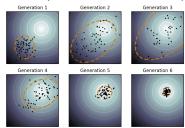
- 60 parameters to calibrate
- 63 targets: unemployment rates, activity rates, salaries, job flows, FTC, long-term unemployment, ...

Scaling

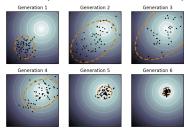

 20 000 agents: 18 300 individuals and 1 700 firms (Reduction factor 1/2300)

- A set of parameters and a set of desired outputs (targets)
- Minimize fitness function

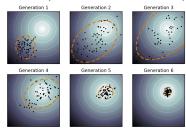
•
$$fit = \sum_{k} w_{k}.(SimOutput_{k} - Target_{k})^{2}$$


- 60 parameters to calibrate
- 63 targets: unemployment rates, activity rates, salaries, job flows, FTC, long-term unemployment, ...

CMA-ES optimization (Hansen and Ostermeier, 2001)


- 1 iteration = 4 years (102 + 102 ticks) 48 replications
- Convergence stop: no improvement for 500 iterations
- Computational cost: 100 000 simulations 2 days on 48-cores computer grid
- median error = 7.9%
 - Mean standard-deviation on the 63 outputs: 6.9% (relative)

CMA-ES optimization (Hansen and Ostermeier, 2001)

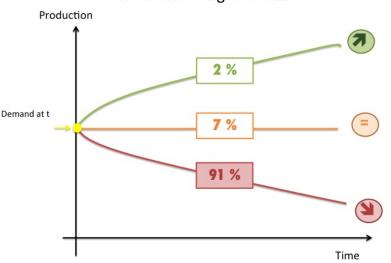

- 1 iteration = 4 years (102 + 102 ticks) 48 replications
- Convergence stop: no improvement for 500 iterations
- Computational cost: 100 000 simulations -2 days on 48-cores computer grid
- \bullet median error = 7.9%
 - Mean standard-deviation on the 63 outputs: 6.9% (relative)

CMA-ES optimization (Hansen and Ostermeier, 2001)

- 1 iteration = 4 years (102 + 102 ticks) 48 replications
- Convergence stop: no improvement for 500 iterations
- Computational cost: 100 000 simulations -2 days on 48-cores computer grid
- \bullet median error = 7.9%
 - Mean standard-deviation on the 63 outputs: 6.9% (relative)

CMA-ES optimization (Hansen and Ostermeier, 2001)

- 1 iteration = 4 years (102 + 102 ticks) 48 replications
- Convergence stop: no improvement for 500 iterations
- Computational cost: 100 000 simulations -2 days on 48-cores computer grid
- median error = 7.9%
 - Mean standard-deviation on the 63 outputs: 6.9% (relative)


CMA-ES optimization (Hansen and Ostermeier, 2001)

- 1 iteration = 4 years (102 + 102 ticks) 48 replications
- Convergence stop: no improvement for 500 iterations
- Computational cost: 100 000 simulations -2 days on 48-cores computer grid
- $median\ error = 7.9\%$
 - Mean standard-deviation on the 63 outputs: 6.9% (relative)

Loss Aversion

4. Results

Assessment of 6 labor public policies

	Δ UEMP (pts)	Comments
Contrat de Génération	-0.38 (yo.), -0.03 (sen.)	windfall (90%)
		and crowding-out
FTC Removal	+2.61 (2 yo), +0.42 (4 yo)	↑ segmentat
		↑ & LTU
Renew FTC twice	+0.25 ,-1.4 <i>LTU</i>	↑ <i>turnover</i> (+7.08)
↓ Charges 1.6 SMIC	-0.72	+233 K jobs
↓ Charges 1.2 SMIC	-0.95	+ 298 K jobs, ↓ costs
↓ Firing costs	$0 \rightarrow \simeq 0$, $x50 \rightarrow +1$	insensitive
X legal justification	-1.89, -9.71 (yo.), $+1.48$ (sen.)	econ. fire x 60
	-2.7 LTU, +726 K EMP	pr(loose job) +65%

- No new FTC contract can be signed except customary contracts (limited to 1% of employment)
- Unemployment increases by 1.1 point, then decreases to the baseline
- However the long term unemployment rises by 24 points
- Employment loses permanently 290,000 jobs.
- the equivalent number of unemployed have become discouraged by the difficulty of finding an OEC and the activity rate falls by 1 point. Human capital starts to fall with irreversible effects
- Suppressing FTC then does not end segmentation effects

- ullet No new FTC contract can be signed except customary contracts (limited to 1% of employment)
- Unemployment increases by 1.1 point, then decreases to the baseline
- However the long term unemployment rises by 24 points
- Employment loses permanently 290,000 jobs.
- the equivalent number of unemployed have become discouraged by the difficulty of finding an OEC and the activity rate falls by 1 point. Human capital starts to fall with irreversible effects
- Suppressing FTC then does not end segmentation effects

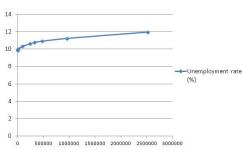
- No new FTC contract can be signed except customary contracts (limited to 1% of employment)
- Unemployment increases by 1.1 point, then decreases to the baseline
- However the long term unemployment rises by 24 points
- Employment loses permanently 290,000 jobs.
- the equivalent number of unemployed have become discouraged by the difficulty of finding an OEC and the activity rate falls by 1 point. Human capital starts to fall with irreversible effects
- Suppressing FTC then does not end segmentation effects

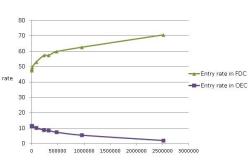
- No new FTC contract can be signed except customary contracts (limited to 1% of employment)
- Unemployment increases by 1.1 point, then decreases to the baseline
- However the long term unemployment rises by 24 points
- Employment loses permanently 290,000 jobs.
- the equivalent number of unemployed have become discouraged by the difficulty of finding an OEC and the activity rate falls by 1 point. Human capital starts to fall with irreversible effects
- Suppressing FTC then does not end segmentation effects

Labor Policies: FTC Removal

- No new FTC contract can be signed except customary contracts (limited to 1% of employment)
- Unemployment increases by 1.1 point, then decreases to the baseline
- However the long term unemployment rises by 24 points
- Employment loses permanently 290,000 jobs.
- the equivalent number of unemployed have become discouraged by the difficulty of finding an OEC and the activity rate falls by 1 point. Human capital starts to fall with irreversible effects
- Suppressing FTC then does not end segmentation effects

Labor Policies: FTC Removal


- No new FTC contract can be signed except customary contracts (limited to 1% of employment)
- Unemployment increases by 1.1 point, then decreases to the baseline
- However the long term unemployment rises by 24 points
- Employment loses permanently 290,000 jobs.
- the equivalent number of unemployed have become discouraged by the difficulty of finding an OEC and the activity rate falls by 1 point. Human capital starts to fall with irreversible effects
- Suppressing FTC then does not end segmentation effects.


- Legal severance pay schedule is multiplied by a factor of 0 to 50.
- Unemployment rises only by 1 point when the severance pay is multiplied by 50
- FTC hires increase and substitute to OEC hires which decline.
- This substitution is also found in the econometric literature: Hijzen et al. (2017), Tejada (2017)
- \bullet If the severance pay is suppressed, the hoarding costs remain and unemployment does not decline below 9.5 %

- Legal severance pay schedule is multiplied by a factor of 0 to 50.
- Unemployment rises only by 1 point when the severance pay is multiplied by 50
- FTC hires increase and substitute to OEC hires which decline.
- This substitution is also found in the econometric literature: Hijzen et al. (2017), Tejada (2017)
- \bullet If the severance pay is suppressed, the hoarding costs remain and unemployment does not decline below 9.5 %

- Legal severance pay schedule is multiplied by a factor of 0 to 50.
- Unemployment rises only by 1 point when the severance pay is multiplied by 50
- FTC hires increase and substitute to OEC hires which decline.
- This substitution is also found in the econometric literature: Hijzen et al. (2017), Tejada (2017)
- \bullet If the severance pay is suppressed, the hoarding costs remain and unemployment does not decline below 9.5 %

- Legal severance pay schedule is multiplied by a factor of 0 to 50.
- Unemployment rises only by 1 point when the severance pay is multiplied by 50
- FTC hires increase and substitute to OEC hires which decline.
- This substitution is also found in the econometric literature: Hijzen et al. (2017), Tejada (2017)
- \bullet If the severance pay is suppressed, the hoarding costs remain and unemployment does not decline below 9.5 %

- This experiment aims principally to show that the model provides results similar to the literature on a topic for which it has not been specifically designed.
- A survey by Ourliac and Nouveau (2012) states that the reduction of charges for salaries below 1.6 SMIC has generated a gain between 200,000 and 400,000 jobs
- WorkSim finds a gain of 233,000 jobs (compared to a simulation with charges)
- The decrease in unemployment is 0.72 points
- Several studies recommend a concentration of the reduction on lower wages
- Experiments with WorkSim show that a setting the ceiling at 1.2 SMIC raises the gain to 298,000 while decreasing the gross cost by created job by 22 %.

- This experiment aims principally to show that the model provides results similar to the literature on a topic for which it has not been specifically designed.
- A survey by Ourliac and Nouveau (2012) states that the reduction of charges for salaries below 1.6 SMIC has generated a gain between 200,000 and 400,000 jobs
- WorkSim finds a gain of 233,000 jobs (compared to a simulation with charges)
- The decrease in unemployment is 0.72 points
- Several studies recommend a concentration of the reduction on lower wages
- Experiments with WorkSim show that a setting the ceiling at 1.2 SMIC raises the gain to 298,000 while decreasing the gross cost by created job by 22 %.

- This experiment aims principally to show that the model provides results similar to the literature on a topic for which it has not been specifically designed.
- A survey by Ourliac and Nouveau (2012) states that the reduction of charges for salaries below 1.6 SMIC has generated a gain between 200,000 and 400,000 jobs
- WorkSim finds a gain of 233,000 jobs (compared to a simulation with charges)
- The decrease in unemployment is 0.72 points
- Several studies recommend a concentration of the reduction on lower wages
- Experiments with WorkSim show that a setting the ceiling at 1.2 SMIC raises the gain to 298,000 while decreasing the gross cost by created job by 22 %.

- This experiment aims principally to show that the model provides results similar to the literature on a topic for which it has not been specifically designed.
- A survey by Ourliac and Nouveau (2012) states that the reduction of charges for salaries below 1.6 SMIC has generated a gain between 200,000 and 400,000 jobs
- WorkSim finds a gain of 233,000 jobs (compared to a simulation with charges)
- The decrease in unemployment is 0.72 points
- Several studies recommend a concentration of the reduction on lower wages
- Experiments with WorkSim show that a setting the ceiling at 1.2 SMIC raises the gain to 298,000 while decreasing the gross cost by created job by 22 %.

- This experiment aims principally to show that the model provides results similar to the literature on a topic for which it has not been specifically designed.
- A survey by Ourliac and Nouveau (2012) states that the reduction of charges for salaries below 1.6 SMIC has generated a gain between 200,000 and 400,000 jobs
- WorkSim finds a gain of 233,000 jobs (compared to a simulation with charges)
- The decrease in unemployment is 0.72 points
- Several studies recommend a concentration of the reduction on lower wages
- Experiments with WorkSim show that a setting the ceiling at 1.2 SMIC raises the gain to 298,000 while decreasing the gross cost by created job by 22 %.

El Khomri Law

- New labor law project introduced in February and adopted on July 21, 2016
- labor Minister Myriam El Khomri ⇒ "El Khomri Law
- Contains many articles: hierarchy of standards, duration of work, training, youth aid,...

- Facilitate Economic Dismissals
- Making labor market more flexible to induce employers to hire on OEC

El Khomri Law

- New labor law project introduced in February and adopted on July 21, 2016
- labor Minister Myriam El Khomri ⇒ "El Khomri Law"
- Contains many articles: hierarchy of standards, duration of work, training, youth aid,...

- Facilitate Economic Dismissals
- Making labor market more flexible to induce employers to hire on OEC

El Khomri Law

- New labor law project introduced in February and adopted on July 21, 2016
- labor Minister Myriam El Khomri ⇒ "El Khomri Law"
- Contains many articles: hierarchy of standards, duration of work, training, youth aid,...

- Facilitate Economic Dismissals
- Making labor market more flexible to induce employers to hire on OFC

El Khomri Law

- New labor law project introduced in February and adopted on July 21, 2016
- labor Minister Myriam El Khomri ⇒ "El Khomri Law"
- Contains many articles: hierarchy of standards, duration of work, training, youth aid,...

- Facilitate Economic Dismissals
- Making labor market more flexible to induce employers to hire on OEC

Many reactions !!

- Strikes. Protesters
- Unions, Youth (students), opposition (left)
- A vivid debate among economists, with 2 sides: pro (Tirole, Blanchard, Aghion, Cahuc,...) vs. anti (Piketty, Ashkenazy, Cohen,...)

- To measure to impact of Article 30 on the French labor Market (FLM) using our agent-based model WorkSim
- The FIRST quantitative (ex ante) evaluation of the law ELK

Many reactions !!

- Strikes. Protesters
- Unions, Youth (students), opposition (left)
- A vivid debate among economists, with 2 sides: pro (Tirole, Blanchard, Aghion, Cahuc,...) vs. anti (Piketty, Ashkenazy, Cohen,...)

- To measure to impact of Article 30 on the French labor Market (FLM) using our agent-based model WorkSim
- The FIRST quantitative (ex ante) evaluation of the law ELK

Many reactions !!

- Strikes. Protesters
- Unions, Youth (students), opposition (left)
- A vivid debate among economists, with 2 sides: pro (Tirole, Blanchard, Aghion, Cahuc,...) vs. anti (Piketty, Ashkenazy, Cohen,...)

- To measure to impact of Article 30 on the French labor Market (FLM) using our agent-based model WorkSim
- The FIRST quantitative (ex ante) evaluation of the law ELM

Many reactions !!

- Strikes. Protesters
- Unions, Youth (students), opposition (left)
- A vivid debate among economists, with 2 sides: pro (Tirole, Blanchard, Aghion, Cahuc,...) vs. anti (Piketty, Ashkenazy, Cohen,...)

- To measure to impact of Article 30 on the French labor Market (FLM) using our agent-based model WorkSim
- The FIRST quantitative (ex ante) evaluation of the law ELM

Many reactions !!

- Strikes. Protesters
- Unions, Youth (students), opposition (left)
- A vivid debate among economists, with 2 sides: pro (Tirole, Blanchard, Aghion, Cahuc,...) vs. anti (Piketty, Ashkenazy, Cohen,...)

- To measure to impact of Article 30 on the French labor Market (FLM) using our agent-based model WorkSim
- The FIRST quantitative (ex ante) evaluation of the law ELK

ELK Law Implementation

Article 30 Economic dismissals will be allowed in case of a decline either in firm's demand or its turnover computed over a certain period, which depends on the firm's size

Firm Size	Period (quarters)
< 11	1
[11,50 [2
[50, 300 [3
≥ 300	4

- \downarrow share of FTCs : 77% \rightarrow 30%
- The OEC becomes the dominant hiring contract (23% \rightarrow 70% of hires)
- Proportion of FTCs in ongoing contracts falls from 8% to 2.3%
 - ullet Mean duration (renewal not included) : 3.6 o 1.9 weeks
- Economic dismissal rate \uparrow : 0.6% \rightarrow 19% (×30)
- OECs become shorter and more precarious
 - probability to loose one's OEC within a year \Uparrow 8.17% \to 13.13% (+ 60 %)

- \downarrow share of FTCs : 77% \rightarrow 30%
- The OEC becomes the dominant hiring contract (23% \rightarrow 70% of hires)
- Proportion of FTCs in ongoing contracts falls from 8% to 2.3%
 - ullet Mean duration (renewal not included) : 3.6 o 1.9 weeks
- Economic dismissal rate \uparrow : 0.6% \rightarrow 19% (×30)
- OECs become shorter and more precarious
 - probability to loose one's OEC within a year \Uparrow 8.17% \to 13.13% (+ 60 %)

- \downarrow share of FTCs : 77% \rightarrow 30%
- \bullet The OEC becomes the dominant hiring contract (23% \rightarrow 70% of hires)
- Proportion of FTCs in ongoing contracts falls from 8% to 2.3%
 - ullet Mean duration (renewal not included) : 3.6 ightarrow 1.9 weeks
- Economic dismissal rate \uparrow : 0.6% \rightarrow 19% (×30)
- OECs become shorter and more precarious
 - probability to loose one's OEC within a year \Uparrow 8.17% \rightarrow 13.13% (+ 60 %)

- \downarrow share of FTCs : 77% \rightarrow 30%
- The OEC becomes the dominant hiring contract (23% \rightarrow 70% of hires)
- Proportion of FTCs in ongoing contracts falls from 8% to 2.3%
 - ullet Mean duration (renewal not included) : 3.6 ightarrow 1.9 weeks
- Economic dismissal rate \uparrow : 0.6% \rightarrow 19% (×30)
- OECs become shorter and more precarious
 - probability to loose one's OEC within a year \Uparrow 8.17% \rightarrow 13.13% (+ 60 %)

- \downarrow share of FTCs : 77% \rightarrow 30%
- \bullet The OEC becomes the dominant hiring contract (23% \rightarrow 70% of hires)
- Proportion of FTCs in ongoing contracts falls from 8% to 2.3%
 - ullet Mean duration (renewal not included) : 3.6 ightarrow 1.9 weeks
- Economic dismissal rate \uparrow : 0.6% \rightarrow 19% (×30)
- OECs become shorter and more precarious
 - probability to loose one's OEC within a year \Uparrow 8.17% \to 13.13% (+ 60 %)

Age group substitution

- After 4 years, no impact on global employment
- Favourable to the young (15-24), ↓ unemployment (- 148,000, -5 pts)
- not significant for the middle-age class (25-49)
- Unfavourable to the Seniors (50-65): ↑ unemployment (+101,000, + 1.4 points), ↓ employment (-121,000).
- ⇒ Young were much more often in FTCs and benefit from their fall
- ⇒ Most of seniors are in OECs and face more dismissals. Moreover, youngers are often preferred to seniors because their net profitability is higher and training can be better amortized.

Age group substitution

- After 4 years, no impact on global employment
- Favourable to the young (15-24), ↓ unemployment (- 148,000, -5 pts)
- not significant for the middle-age class (25-49)
- Unfavourable to the Seniors (50-65): ↑ unemployment (+101,000, + 1.4 points), ↓ employment (-121,000).
- ⇒ Young were much more often in FTCs and benefit from their fall
- ⇒ Most of seniors are in OECs and face more dismissals. Moreover, youngers are often preferred to seniors because their net profitability is higher and training can be better amortized.

Age group substitution

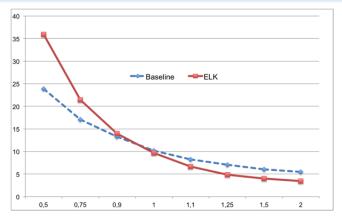
- After 4 years, no impact on global employment
- Favourable to the young (15-24), ↓ unemployment (- 148,000, -5 pts)
- not significant for the middle-age class (25-49)
- Unfavourable to the Seniors (50-65): ↑ unemployment (+101,000, + 1.4 points), ↓ employment (-121,000).
- ⇒ Young were much more often in FTCs and benefit from their fall
- ⇒ Most of seniors are in OECs and face more dismissals. Moreover, youngers are often preferred to seniors because their net profitability is higher and training can be better amortized.

Age group substitution

- After 4 years, no impact on global employment
- Favourable to the young (15-24), ↓ unemployment (- 148,000, -5 pts)
- not significant for the middle-age class (25-49)
- Unfavourable to the Seniors (50-65): \uparrow unemployment (+101,000, + 1.4 points), \downarrow employment (-121,000).
- ⇒ Young were much more often in FTCs and benefit from their fall
- ⇒ Most of seniors are in OECs and face more dismissals. Moreover, youngers are often preferred to seniors because their net profitability is higher and training can be better amortized.

Age group substitution

- After 4 years, no impact on global employment
- Favourable to the young (15-24), ↓ unemployment (- 148,000, -5 pts)
- not significant for the middle-age class (25-49)
- Unfavourable to the Seniors (50-65): \uparrow unemployment (+101,000, + 1.4 points), \downarrow employment (-121,000).
- → Young were much more often in FTCs and benefit from their fall
- → Most of seniors are in OECs and face more dismissals.


 Moreover, youngers are often preferred to seniors because their net profitability is higher and training can be better amortized.

Age group substitution

- After 4 years, no impact on global employment
- Favourable to the young (15-24), ↓ unemployment (- 148,000, -5 pts)
- not significant for the middle-age class (25-49)
- Unfavourable to the Seniors (50-65): \uparrow unemployment (+101,000, + 1.4 points), \downarrow employment (-121,000).
- → Young were much more often in FTCs and benefit from their fall
- ⇒ Most of seniors are in OECs and face more dismissals.

 Moreover, youngers are often preferred to seniors because their net profitability is higher and training can be better amortized.

Adjustment to aggregate demand

- When demand \uparrow : more hire in OECs, and unemployment \downarrow (-2 pts)
- When demand ↓ : more economic dismissals, and unemployment ↑ (between 4 and 12 pts)

5. Discussion and perspectives

Summary: Contributions of WorkSim

- Most comprehensive ABM of the French labour Market
- Theoretical contributions to the choice between labour contracts
- Calibrated on a large number of targets
- Analyzes the anatomy of the French Labor Market
- Anticipations (with several scenarios) matter
- evaluates policies ex ante. They have at least distributional effects

- Most comprehensive ABM of the French labour Market
- Theoretical contributions to the choice between labour contracts
- Calibrated on a large number of targets
- Analyzes the anatomy of the French Labor Market
- Anticipations (with several scenarios) matter
- evaluates policies ex ante. They have at least distributiona effects

- Most comprehensive ABM of the French labour Market
- Theoretical contributions to the choice between labour contracts
- Calibrated on a large number of targets
- Analyzes the anatomy of the French Labor Market
- Anticipations (with several scenarios) matter
- evaluates policies ex ante. They have at least distributiona effects

- Most comprehensive ABM of the French labour Market
- Theoretical contributions to the choice between labour contracts
- Calibrated on a large number of targets
- Analyzes the anatomy of the French Labor Market
- Anticipations (with several scenarios) matter
- evaluates policies ex ante. They have at least distributional effects

- Most comprehensive ABM of the French labour Market
- Theoretical contributions to the choice between labour contracts
- Calibrated on a large number of targets
- Analyzes the anatomy of the French Labor Market
- Anticipations (with several scenarios) matter
- evaluates policies ex ante. They have at least distributional effects

- Most comprehensive ABM of the French labour Market
- Theoretical contributions to the choice between labour contracts
- Calibrated on a large number of targets
- Analyzes the anatomy of the French Labor Market
- Anticipations (with several scenarios) matter
- evaluates policies ex ante. They have at least distributional effects

- **Double substitution**: $FTC \Rightarrow OEC$ and Seniors \Rightarrow Youth
- These substitutions have been overlooked by lack of a quantitative evaluation of the law
- Shift from one type of flexibility (hires in short FTC) to another (short and more precarious OEC)
- Asymetric response to demand shocks

- **Double substitution**: *FTC* ⇒ *OEC* and Seniors ⇒ Youth
- These substitutions have been overlooked by lack of a quantitative evaluation of the law
- Shift from one type of flexibility (hires in short FTC) to another (short and more precarious OEC)
- Asymetric response to demand shocks

- **Double substitution** : $FTC \Rightarrow OEC$ and Seniors \Rightarrow Youth
- These substitutions have been overlooked by lack of a quantitative evaluation of the law
- Shift from one type of flexibility (hires in short FTC) to another (short and more precarious OEC)
- Asymetric response to demand shocks

- **Double substitution** : $FTC \Rightarrow OEC$ and Seniors \Rightarrow Youth
- These substitutions have been overlooked by lack of a quantitative evaluation of the law
- Shift from one type of flexibility (hires in short FTC) to another (short and more precarious OEC)
- Asymetric response to demand shocks

- **Double substitution** : $FTC \Rightarrow OEC$ and Seniors \Rightarrow Youth
- These substitutions have been overlooked by lack of a quantitative evaluation of the law
- Shift from one type of flexibility (hires in short FTC) to another (short and more precarious OEC)
- Asymetric response to demand shocks

- **Extend** the model : temporary employment agencies, social networks, training over the career, task based jobs, unions ...
- Plug into a Macroeconomic framework
- Cohort analysis (classification of individual trajectories)
- Link with econometrics
 - to improve the agents' micro-foundation and enhance the validation process.

- **Extend** the model : temporary employment agencies, social networks, training over the career, task based jobs, unions ...
- Plug into a Macroeconomic framework
- Cohort analysis (classification of individual trajectories)
- Link with econometrics
 - to improve the agents' micro-foundation and enhance the validation process.

- **Extend** the model : temporary employment agencies, social networks, training over the career, task based jobs, unions ...
- Plug into a Macroeconomic framework
- Cohort analysis (classification of individual trajectories)
- Link with econometrics
 - to improve the agents' micro-foundation and enhance the validation process.

- **Extend** the model : temporary employment agencies, social networks, training over the career, task based jobs, unions ...
- Plug into a Macroeconomic framework
- Cohort analysis (classification of individual trajectories)
- Link with econometrics
 - to improve the agents' micro-foundation and enhance the validation process.

- **Extend** the model : temporary employment agencies, social networks, training over the career, task based jobs, unions ...
- Plug into a Macroeconomic framework
- Cohort analysis (classification of individual trajectories)
- Link with econometrics
 - to improve the agents' micro-foundation and enhance the validation process.

Perspectives

- Apply to other countries
 - WorkSim code is modular, institutions is an independent component with an interface to the simulator
- NumJobs : Impact of digital and AI to employment
 - skills and task
 - link with innovation

http://worksim.lip6.fr

http://www-poleia.lip6.fr/~kant/numjobs/

Perspectives

- Apply to other countries
 - WorkSim code is modular, institutions is an independent component with an interface to the simulator
- NumJobs : Impact of digital and AI to employment
 - skills and tasks
 - link with innovation

nttp://worksim.lip6.fr http://www-poleia.lip6.fr/~kant/numjobs/

Perspectives

- Apply to other countries
 - WorkSim code is modular, institutions is an independent component with an interface to the simulator
- NumJobs : Impact of digital and AI to employment
 - skills and tasks
 - link with innovation

http://worksim.lip6.fr

http://www-poleia.lip6.fr/~kant/numjobs/

